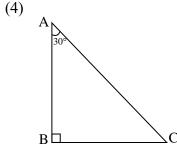

- - (ii) Use of a calculator is not allowed.
 - (iii) The numbers to the right of the questions indicate full marks.
 - (iv) In case of MCQs [Q. No. 1(A)], only the first attempt will be evaluated and will be given credit.
 - For every MCQ, the correct alternative (A), (B), (C) or (D) with subquestion number is to be written as an answer.

Q.1. (A) Four alternative answers are given for every sub-question. Select the correct alternative and write the alphabet of that answer. [4]

- From the following points point lies to the right (1) side of the origin on X-axis.
 - (a) (-2,0) (b) (0,2) (c) (2,3) (d) (2,0)
- $\triangle PQR \sim \triangle STU$ and $A(\triangle PQR)$: $A(\triangle STU) = 64.81$, then what is (2) the ratio of corresponding sides?
 - (a) 8:9
- (b) 64:81
- (c) 9:8
- (d) 16:27
- In a right-angled triangle, if the sum of the squares of the (3) sides making right angle is 169, then what is the length of hypotenuse?
 - (a) 15
- (b) 13
- (c) 5
- (d) 12
- If $\tan \theta = \sqrt{3}$, then the value of θ is (4)
 - (a) 60°
- (b) 30°
- (c) 90° (d) 45°


Q.1. (B) Solve the following sub-questions.

[4]

In the above figure, seg CB \perp seg AB, seg AD \perp seg AB. If BC = 4, AD = 8, then find $\frac{A(\Delta ABC)}{\Delta(\Delta \Delta DB)}$

- (2) Find the co-ordinates of the mid-point of the segment joining the points (22, 20) and (0, 16).
- (3) Two circles having radii 7 cm and 4 cm touch each other internally. Find the distance between their centres.

In $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle A = 30^{\circ}$, AC = 14, then find BC.

Q.2. (A) Complete the following activities and rewrite them. (Any two) [4]

(1) In the given figure, ∠PQR is inscribed in the semicircle PQR. Then complete the following activity to find the measure of ∠PQR.

Activity:

$$m(\text{arc PQR}) = 180^{\circ}$$

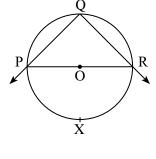
..... (measure of semicircle)
∴ m(arc PXR) =

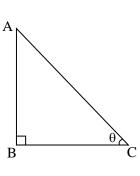
$$\therefore M(\text{arc } 1 \text{ AR}) = \square$$

$$\therefore \angle PQR = \frac{1}{2} \text{ m(arc } \square) \dots [$$

$$\frac{1}{2} = \frac{1}{2} \text{ m(arc }) \dots$$

$$= \frac{1}{2} \times 180^{\circ}$$


$$\therefore \angle PQR = \boxed{}$$


(2) In $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle C = \theta^{\circ}$, then complete the activity to derive the trigonometric identity.

Activity:

In
$$\triangle ABC$$
, $\angle B = 90^{\circ}$, $\angle C = \theta^{\circ}$

$$\therefore AB^2 + BC^2 =$$
......(Pythagoras theorem)

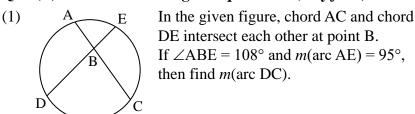
$$\therefore \frac{AB^2}{AB^2} + \frac{BC^2}{AB^2} = \frac{AC^2}{AB^2} \text{ ...dividing by } AB^2$$

$$\therefore 1 + \frac{BC^2}{AB^2} = \frac{AC^2}{AB^2}$$

$$\text{But } \frac{AC^2}{AB^2} = \cot^2\theta \text{ and } \frac{AC^2}{AC^2} = \csc^2\theta$$

$$\therefore 1 + \frac{AC^2}{AC^2} = \csc^2\theta$$

(3) In $\triangle PQR$, if PN = 12, NR = 8, PM = 15, MQ = 12, then complete the following activity to justify whether seg NM is parallel to side RQ or not.


Activity:

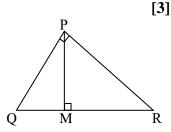
In
$$\triangle PQR$$
,
$$\frac{PN}{NR} = \frac{12}{\square} = \frac{3}{2} \qquad (I)$$
 and
$$\frac{PM}{MQ} = \frac{15}{12} = \frac{\square}{4} \qquad (II)$$

$$\therefore \qquad \frac{PN}{NR} \neq \frac{PM}{MQ} \qquad from (I) and (II)$$

$$\therefore \qquad By \qquad$$

Q.2. (B) Solve the following sub-questions. (Any four) [8]

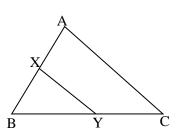
to side RQ.


seg NM is

- (2) Find the distance between the points P(-1, 1) and Q(5, -7).
- (3) Construct a tangent to a circle with centre P and radius 3.5 cm at any point M on it.
- (4) Find the length of the diagonal of a rectangle having sides 11 cm and 60 cm.

- (5) If $\sin \theta = \frac{7}{25}$, then find the value of $\cos \theta$ and $\tan \theta$.
- Q.3. (A) Complete the following activities and rewrite them.
- (1) In the given figure, ∠QPR = 90°, seg PM ⊥ seg QR and Q-M-R.
 PM = 10, QM = 8, then complete the following activity to find the value of OR.

(Any one)


Activity:

In \triangle PQR, \angle QPR = 90° and seg PM \perp seg QR.

- $\therefore \qquad PM^2 = \boxed{\qquad} \times MR \dots$
- $\therefore \quad ()^2 = 8 \times MR$
- $\therefore \frac{100}{8} = MR$
- \therefore = MR

Now $QR = QM + MR \dots (:Q-M-R)$

- \therefore QR =
- (2) In the given figure, in ΔABC seg XY | | side AC, A-X-B, B-Y-C. If 2AX = 3BX and XY= 9, then complete the following activity to find the value of AC.

Activity:

$$2AX = 3BX$$
 given

$$\therefore \qquad \frac{AX}{BX} = \boxed{ }$$

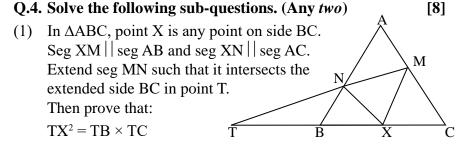
$$\therefore \frac{AX + BX}{BX} = \frac{3+2}{2}$$
.....componendo

$$\therefore \frac{AB}{BX} = \frac{5}{2} \qquad \dots (I)$$

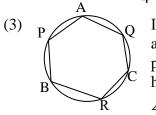
 Δ BCA ~ Δ BYX test of similarity

$$\therefore \frac{BA}{BX} = \frac{AC}{\Box} \qquad \dots \qquad \overline{c.s.s.t.}$$

$$\therefore \quad \frac{5}{2} = \frac{AC}{\Box} \qquad \dots \qquad \text{from (I)}$$


$$AC =$$

Q.3. (B) Solve the following sub-questions. (Any two) [6]


(1) Prove that:

$$\sec \theta + \tan \theta = \frac{\cos \theta}{1 - \sin \theta}$$

- (2) Find the co-ordinates of the centroid of the triangle whose vertices are (4, 7), (8, 4), (7, 11).
- (3) Prove that 'opposite angles of a cyclic quadrilateral are supplementary'.
- (4) Draw a circle with centre 'O' and radius 3.5 cm. Take a point P at a distance of 7.5 cm from the centre. Draw tangents to the circle from point P.

(2) Draw a triangle ABC, right angle at B such that AB = 3 cm, BC = 4 cm. Now construct \triangle PBQ similar to \triangle ABC, each of whose sides are $\frac{7}{4}$ times the corresponding sides of \triangle ABC.

In the given figure, points A, P, B, R, C, Q are on the circle. After joining the given points as shown in the figure, they form a hexagon. Then prove that: $\angle APB + \angle BRC = 360^{\circ} - \angle AQC$

- (1) \triangle ABC and \triangle PQR are equilateral triangles with altitudes $2\sqrt{3}$ and $4\sqrt{3}$ respectively, then:
 - (a) Find the length of side AB and side PQ.
 - (b) Find $\frac{A(\Delta ABC)}{A(\Delta PQR)}$
 - (c) Find the ratio of the perimeter of $\triangle ABC$ to the perimeter of $\triangle PQR$.
- (2) In a circle with centre O, PA and PB are tangents from an external point P. E is the point on the circle such that O-E-P. The tangent drawn at E intersects PA and PB in points C and D respectively. If PA = 10, then write answers to the following questions:
 - (a) Draw the suitable figure using given information.
 - (b) Write the relation between seg PA and seg PB.
 - (c) Find the perimeter of $\triangle PCD$.