
Time	: 2 hours	Board Paper -	– March 2022	Total Marks:
Note	e: (i)	All questions are co	ompulsory.	
	(ii)	Use of calculator is not allowed.		
	(iii)	The numbers to the right of the questions indicate full marks.		
	(iv)	In case of MCQs [Q.No.1(A)], only the first attempt will be evaluated and will be given credit.		
	(v)	For every MCQ, the or (D) with sub-que an answer.		
	(vi)	Draw proper figures for answers wherever necessary.		
	(vii)	The marks of construction should be clear. Do not erase them.		
	(viii)	Diagram is essential theorem.	l for writing th	ne proof of the
	1. (A) For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet: [4] If $\triangle ABC \sim \triangle DEF$ and $\angle A = 48^{\circ}$, then $\angle D =$			
	(a) 48°	(b) 83°	(c) 49°	(d) 132°
	AP is a tangent at A drawn to the circle with centre O from an external point P. $OP = 12 \text{ cm}$ and $\angle OPA = 30^{\circ}$, then the radius of the circle is			
	(a) 12 cr	m (b) $6\sqrt{3}$ cm	(c) 6 cm	(d) $12\sqrt{3}$ cm
	Seg AB is parallel to X-axis and co-ordinates of the point A are (1, 3), then the co-ordinates of the point B can be			
	(a) (-3,	1) (b) (5, 1)	(c) (3, 0)	(d) (-5, 3)
(4)	The value of $2\tan 45^{\circ} - 2\sin 30^{\circ}$ is			
	(a) 2	(b) 1	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$

_ ____

(1)

In $\triangle ABC$, $\angle ABC = 90^{\circ}$, $\angle BAC = \angle BCA = 45^{\circ}$. If $AC = 9\sqrt{2}$, then find the value of AB.

- (2) Chord AB and chord CD of a circle with centre O are congruent. If $m(\text{arc AB}) = 120^{\circ}$, then find m(arc CD).
- (3) Find the Y co-ordinate of the centroid of a triangle whose vertices are (4, -3), (7, 5) and (-2, 1).
- (4) If $\sin \theta = \cos \theta$, then what will be the measure of angle θ ?

Q.2. (A) Complete the following activities and rewrite them (any *two*): [4]

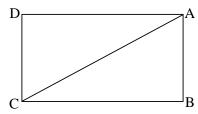
(1) In the alongside figure, seg AC and seg
BD intersect each other in point P.

If $\frac{AP}{CP} = \frac{BP}{DP}$, then complete the following activity to prove

following activity to prove $\triangle ABP \sim \triangle CDP$.

$$\frac{AP}{CP} = \frac{BP}{DP}$$

 \therefore $\angle APB \cong \square$


...Vertically opposite angles

В

 ΔCDP

... test of similarity.

is a rectangle. If AB = 5, AC = 13, then complete the following activity to find BC.

Activity:

 \triangle ABC is triangle.

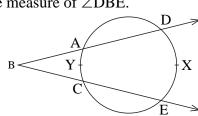
.. By Pythagoras theorem,

 $\therefore \quad \text{By Pythagoras theorem} \\ AB^2 + BC^2 = AC^2$

 $BC^2 = BC^2 = BC =$

(3) Complete the following activity to prove: $\cot \theta + \tan \theta = \csc \theta \times \sec \theta$

Activity:


L.H.S. =
$$\cot \theta + \tan \theta$$

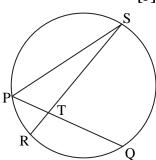
= $\frac{\cos \theta}{\sin \theta} + \frac{\Box}{\cos \theta}$

$$= \frac{\Box + \sin^2 \theta}{\sin \theta \times \cos \theta}$$

$$= \frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$$
$$= \boxed{\times \sec \theta}$$

$$\therefore$$
 L.H.S. = R.H.S.

- .. ב.....
- Q.2. (B) Solve the following sub-questions (any *four*): [8]
 (1) If ΔABC ~ ΔPQR, AB:PQ = 4:5 and A(ΔPQR) = 125 cm², then find A(ΔABC).
- (2) In the following figure, $m(\text{arc DXE}) = 105^{\circ}$, $m(\text{arc AYC}) = 47^{\circ}$, then find the measure of $\angle DBE$.


(3) Draw a circle of radius 3.2 cm and centre 'O'. Take any point P on it. Draw a tangent to the circle through point P using the centre of the circle.

- (4) If $\sin \theta = \frac{11}{61}$, then find the value of $\cos \theta$ using trigonometric identity.
- (5) In \triangle ABC, AB = 9 cm, BC = 40 cm, AC = 41 cm. State whether \triangle ABC is a right-angled triangle or not. Write reason.

Q.3. (A) Complete the following activity and rewrite it (any one): [3]

In the alongside figure, chord PQ and chord RS intersect each other at point T. If ∠STQ = 58° and ∠PSR = 24°, then complete the following activity to verify:

$$\angle STQ = \frac{1}{2} [m(arc PR) + m(arc SQ)]$$

Activity:

In $\triangle PTS$,

$$\angle SPQ = \angle STQ - \square$$
Exterior angle theorem

$$\therefore$$
 \angle SPQ = 34°

$$\therefore m(\text{arc QS}) = 2 \times \boxed{ }^{\circ} = 68^{\circ} \dots \boxed{ }$$

Similarly,
$$m(\text{arc PR}) = 2\angle PSR = \boxed{ }^{\circ}$$

$$\therefore \frac{1}{2} [m(\text{arc QS}) + m(\text{arc PR})] = \frac{1}{2} \times \text{ } ^{\circ} = 58^{\circ} \dots (I)$$

But
$$\angle STQ = 58^{\circ}$$
 (II), given

$$\therefore \frac{1}{2} [m(\text{arc PR}) + m(\text{arc QS})] = \boxed{\angle \dots} \dots \text{From (I) and (II)}$$

(2) Complete the following activity to find the co-ordinates of point P which divides seg AB in the ratio 3:1 where A(4, -3) and B(8, 5).

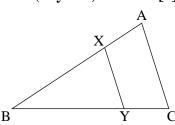
Activity:

By section formula,

$$x = \frac{mx_2 + nx_1}{\Box}, \qquad y = \frac{\Box}{m + n}$$

$$\therefore x = \frac{3 \times 8 + 1 \times 4}{3 + 1}, \qquad y = \frac{3 \times 5 + 1 \times (-3)}{3 + 1}$$

$$= \frac{3+1}{3+4},$$


$$= \frac{4}{4}$$

$$= \frac{3+1}{4}$$

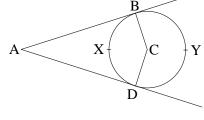
$$\therefore x = \square$$

Q.3. (B) Solve the following sub-questions (any *two*): [6]

(1) In \triangle ABC, seg XY || side AC. If 2AX = 3BX and XY = 9, then find the value of AC.

- (2) Prove that "Opposite angles of cyclic quadrilateral are supplementary."
- (3) \triangle ABC ~ \triangle PQR. In \triangle ABC, AB = 5.4 cm, BC = 4.2 cm, AC = 6.0 cm, AB:PQ = 3:2, then construct \triangle ABC and \triangle PQR.
- (4) Show that:

$$\frac{\tan A}{(1 + \tan^2 A)^2} + \frac{\cot A}{(1 + \cot^2 A)^2} = \sin A \times \cos A$$


Q.4. Solve the following sub-questions (any two):

- - Point P is the midpoint of side P CD. Seg BP intersects diagonal AC at point X, then prove that:

 3AX = 2AC

[8]

(2) In the alongside figure, seg AB and seg AD are tangent segments drawn to a circle with centre C from exterior point A, then prove that:

 $\angle A = \frac{1}{2} [m(\text{arc BYD}) - m(\text{arc BXD})]$

(3) Find the co-ordinates of centroid of a triangle if points D(-7, 6), E(8, 5) and F(2, -2) are the midpoints of the sides of that triangle.

Q.5. Solve the following sub-question (any *one*): [3]

- (1) a and b are natural numbers and a > b. If $(a^2 + b^2)$, $(a^2 b^2)$ and 2ab are the sides of a triangle, then prove that the triangle is right angled.
 - Find out two Pythagorean triplets by taking suitable values of *a* and *b*.
- (2) Construct two concentric circles with centre O and radii 3 cm and 5 cm. Construct a tangent to the smaller circle from any point A on the larger circle. Measure and write the length of the tangent segment. Calculate the length of the tangent segment using Pythagoras theorem.