SOLUTION

- Q.1. (A) For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet: [4]
- (1) If $\triangle ABC \sim \triangle DEF$ and $\angle A = 48^\circ$, then $\angle D =$ _____ (a) 48° (b) 83° (c) 49° (d) 132°
- (2) AP is a tangent at A drawn to the circle with centre O from an external point P. OP = 12 cm and $\angle OPA = 30^\circ$, then the radius of the circle is _____.

(a) 12 cm (b) $6\sqrt{3}$ cm (c) 6 cm (d) $12\sqrt{3}$ cm

(3) Seg AB is parallel to X-axis and co-ordinates of the point A are (1, 3), then the co-ordinates of the point B can be

(a) (-3, 1) (b) (5, 1) (c) (3, 0) (d) (-5, 3)(4) The value of $2\tan 45^\circ - 2\sin 30^\circ$ is ______. (a) 2 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{3}{4}$ Ans. (1) - (a), (2) - (c), (3) - (d), (4) - (b)

then find the value of AB.

Solution:

· .

...

· .

· .

....

In $\triangle ABC$, $\angle ABC = 90^{\circ}$ $\angle BAC = \angle BCA = 45^{\circ}$ Let AB = BC = xBy Pythagoras theorem, $AB^2 + BC^2 = AC^2$ $x^2 + x^2 = (9\sqrt{2})^2$ $2x^2 = 81 \times 2$ $x^2 = 81$ x = 9AB = 9

(2) Chord AB and chord CD of a circle with centre O are congruent. If $m(\operatorname{arc} AB) = 120^{\circ}$, then find $m(\operatorname{arc} CD)$.

Solution:

	Chord CD	≅	Chord AB	(Given)
<i>.</i>	<i>m</i> (arc CD)	=	<i>m</i> (arc AB)	(Corresponding arcs of
				congruent chords)
		=	120°	[As $m(\text{arc AB}) = 120^\circ$, given]
<i>.</i>	m(arc CD)	=	120°	

(3) Find the Y co-ordinate of the centroid of a triangle whose vertices are (4, -3), (7, 5) and (-2, 1).

Solution:

Let $(4, -3) \equiv (x_1, y_1)$

 $(7, 5) \equiv (x_2, y_2)$ $(-2, 1) \equiv (x_3, y_3)$

By the centroid formula,

$$y = \frac{y_1 + y_2 + y_3}{3} = \frac{-3 + 5 + 1}{3} = \frac{3}{3} = 1$$

Ans. The Y co-ordinate of the centroid of the triangle is 1.

(4) If $\sin \theta = \cos \theta$, then what will be the measure of angle θ ? Solution:

$$\sin \theta = \cos \theta \qquad \text{(Given)}$$
$$\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$$
$$\theta = 45^\circ$$

...

Q.2. (A) Complete the following activities and rewrite them (any *two*): [4]

D

C

Ρ

В

(1) In the alongside figure, seg AC and seg BD intersect each other in point P.

If
$$\frac{AP}{CP} = \frac{BP}{DP}$$
, then complete the

following activity to prove

 $\triangle ABP \sim \triangle CDP.$

Activity: In $\triangle APB$ and $\triangle CDP$,

(2) In the alongside figure, D
□ABCD is a rectangle.
If AB = 5, AC = 13, then complete the following activity to find BC.
Activity: C

.: By Pythagoras theorem,

$$AB^2 + BC^2 = AC^2$$

$$25 + BC^{2} = 169$$
$$BC^{2} = 144$$
$$BC = 12$$

...

...

....

(3) Complete the following activity to prove:

 $\cot \theta + \tan \theta = \csc \theta \times \sec \theta$ Activity:

 \therefore L.H.S. = R.H.S.

- Q.2. (B) Solve the following sub-questions (any *four*): [8]
- (1) If $\triangle ABC \sim \triangle PQR$, AB:PQ = 4:5 and $A(\triangle PQR) = 125$ cm², then find $A(\triangle ABC)$.

Solution:

	$\Delta ABC \sim \Delta P$	QR		(Given)
÷	$\frac{A(\Delta ABC)}{A(\Delta PQR)}$	=	$\frac{AB^2}{PQ^2}$	(Theorem of area of two similar triangles)
	$\frac{A(\Delta ABC)}{A(\Delta PQR)}$	=	$\left(\frac{AB}{PQ}\right)^2$	
	<u>A(ΔABC)</u> 125	=	$\left(\frac{4}{5}\right)^2$	
	<u>A(ΔABC)</u> 125	=	$\frac{16}{25}$	
	A(ΔABC)	=	$\frac{16 \times 125}{25}$	5
		=	16×5	
		=	80	
	A(ΔABC)	=	80 sq.cn	1

(2) In the following figure, $m(\text{arc DXE}) = 105^{\circ}$, $m(\text{arc AYC}) = 47^{\circ}$, then find the measure of $\angle \text{DBE}$.

Solution:

...

$$\angle DBE = \frac{1}{2} [m(\text{arc DXE}) - m(\text{arc AYC})]$$
$$= \frac{1}{2} [105^{\circ} - 47^{\circ}]$$
$$= \frac{1}{2} \times 58^{\circ}$$
$$\angle DBE = 29^{\circ}$$

(3) Draw a circle of radius 3.2 cm and centre 'O'. Take any point P on it. Draw a tangent to the circle through point P using the centre of the circle.

(4) If $\sin \theta = \frac{11}{61}$, then find the value of $\cos \theta$ using trigonometric identity.

Solution:

 $\sin^2 \theta + \cos^2 \theta = 1 \qquad \dots \text{(Trigonometric identity)}$ $\therefore \quad \left(\frac{11}{61}\right)^2 + \cos^2 \theta = 1$ $\therefore \quad \frac{121}{3721} + \cos^2 \theta = 1$ $\therefore \qquad \cos^2 \theta = 1 - \frac{121}{3721}$ $= \frac{3721 - 121}{3721}$ $= \frac{3600}{3721}$ $\therefore \qquad \cos \theta = \frac{60}{61} \qquad \dots \text{(Taking square root on both sides)}$

In $\triangle ABC, AB = 9$ cm, BC = 40 cm, AC = 41 cm. State whether (5) **ABC** is a right-angled triangle or not. Write reason.

Solution:

....

In ΔABC,	
$AB^2 + BC^2 = 9^2 + (40)^2$	
= 81 + 1600	
= 1681	(i)
$AC^2 = (41)^2 = 1681$	(ii)
$AB^2 + BC^2 = AC^2$	[From (i) and (ii)]

 \triangle ABC is a right-angled tringle. · . (By converse of Pythagoras theorem)

Q.3. (A) Complete the following activity and rewrite it. (Any one):

In the alongside figure, chord PQ and (1) chord RS intersect each other at point T. If $\angle STQ = 58^{\circ}$ and $\angle PSR = 24^\circ$, then complete the following activity to verify:

$$\angle$$
STQ = $\frac{1}{2}$ [m(arc PR) + m(arc SQ)]

Activity:

In $\triangle PTS$,

$$\angle$$
SPQ = \angle STQ - $\boxed{\angle$ PST} (Exterior angle theorem)

$$\therefore \angle SPQ = 34^{\circ}$$

 $m(\text{arc QS}) = 2 \times \boxed{34}^\circ = 68^\circ$...(Inscribed angle theorem) *.*.. Similarly, $m(\text{arc PR}) = 2\angle \text{PSR} = 48^{\circ}$

$$\therefore \quad \frac{1}{2} \left[m(\text{arc QS}) + m(\text{arc PR}) \right] = \frac{1}{2} \times \boxed{68 + 48}^{\circ} = 58^{\circ} \qquad \dots \text{(I)}$$

But $\angle \text{STO} = 58^{\circ} \qquad \dots \text{(II)}, \text{ given } \mathbf{M} = 58^{\circ} \qquad \dots \text{(II)}, \mathbf{M} = 58^{\circ} \qquad \dots \text{(II)}$

at
$$\angle STQ = 58^{\circ}$$
 ...(II), given

 $\therefore \quad \frac{1}{2} \left[m(\text{arc PR}) + m(\text{arc QS}) \right] = \checkmark STQ$

...From (I) and (II)

(2) Complete the following activity to find the co-ordinates of point P which divides seg AB in the ratio 3:1 where A(4, -3) and B(8, 5).

Acti	ivity:		
	A	P	В
	(4, -3)	(x, y)	(8, 5)
	By section formula,		
	$x = \frac{mx_2 + nx_1}{m+n},$	$y = \frac{my_2}{m}$	$\frac{1}{n+ny_1}$
	$x = \frac{3 \times 8 + 1 \times 4}{3 + 1},$	$y = \frac{3 \times 5}{\Box}$	$+ 1 \times (-3)$ 3 + 1
	$=\frac{\lfloor 24 \rfloor + 4}{4}$,	$=\frac{15}{4}$	-3
<i>.</i>	x = 7	$\therefore y = 3$	
Q.3	. (B) Solve the following sub-q	uestions (any <i>t</i>	wo): [6]
(1)	In \triangle ABC, seg XY side AC. 2AX = 3BX and XY = 9, the find the value of AC.	If nen	X
Solı	ition:		
	In ΔABC,		
	seg XY side AC	B	Y C
	2AX = 3BX	(01vell)	
÷	$\frac{AX}{BX} = \frac{3}{2}$		
÷	$\frac{\mathbf{AX} + \mathbf{BX}}{\mathbf{BX}} = \frac{3 + 2}{2}$	(By Compo	nendo)
÷	$\frac{AB}{BX} = \frac{5}{2}$	(i) (::A–X–I	3)

In \triangle BCA and \triangle BYX,

 $\angle BCA \cong \angle BYX$

...(Corresponding angles)

	$\angle CBA \cong \angle YBX$	(Common angle)
.:.	$\Delta BCA \cong \Delta BYX$	(AA test of similarity)
	$\frac{AB}{BX} = \frac{AC}{XY}$	(C.S.S.T)
	$\frac{5}{2} = \frac{AC}{9}$	
	$AC = \frac{5 \times 9}{2}$	
	AC = 22.5	

(2) Prove that "Opposite angles of cyclic quadrilateral are supplementary."

Solution:

....

Given: \Box ABCD is cyclic. **To prove:** $\angle B + \angle D = 180^{\circ}$ $\angle A + \angle C = 180^{\circ}$

Proof:

Arc ABC is intercepted by the inscribed angle ADC.

$$\angle ADC = \frac{1}{2} m(arc ABC)$$
 ...(i)

Similarly, arc ADC is intercepted by the insctribed angle ABC.

$$\therefore \qquad \angle ABC = \frac{1}{2} m(\text{arc ADC}) \qquad \dots(\text{ii})$$

$$\therefore \qquad m \angle ADC + m \angle ABC = \frac{1}{2} m(\text{arc ABC}) + \frac{1}{2} m(\text{arc ADC}) \qquad [From (i) \text{ and (ii)}]$$

$$= \frac{1}{2} [m(\text{arc ABC}) + m(\text{arc ADC})]$$

$$= \frac{1}{2} \times 360^{\circ} \dots(\text{Arcs ABC and ADC})$$

$$= \frac{1}{2} \times 360^{\circ} \dots(\text{Arcs ABC and ADC})$$

$$\therefore \qquad \angle ADC + \angle ABC = 180^{\circ}$$
Similarly, we can prove that

 $\angle A + \angle C = 180^{\circ}.$

(3) $\triangle ABC \sim \triangle PQR$. In $\triangle ABC$, AB = 5.4 cm, BC = 4.2 cm, AC = 6.0 cm, AB:PQ = 3:2, then construct $\triangle ABC$ and $\triangle PQR$.

Solution:

 $\triangle ABC \sim \triangle PQR$

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} \qquad \dots (C.S.S.T)$$

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{3}{2} \qquad \dots (AB:PQ = 3:2, \text{ given})$$

$$\therefore \frac{5.4}{PQ} = \frac{4.2}{QR} = \frac{6}{PR} = \frac{3}{2}$$

$$\therefore PQ = \frac{5.4 \times 2}{3} = 3.6 \text{ cm}$$

$$\frac{4.2}{QR} = \frac{3}{2}$$

$$\therefore QR = \frac{4.2 \times 2}{3} = 2.8 \text{ cm}$$

$$5.4 \text{ cm}$$

$$4.2 \text{ cm}$$

$$3.6 \text{ cm}$$

$$2.8 \text{ cm}$$

$$3.6 \text{ cm}$$

$$4 \text{ cm}$$

(4) Show that:

$$\frac{\tan A}{(1+\tan^2 A)^2} + \frac{\cot A}{(1+\cot^2 A)^2} = \sin A \times \cos A$$

Solution:

LHS =
$$\frac{\tan A}{(1 + \tan^2 A)^2} + \frac{\cot A}{(1 + \cot^2 A)^2}$$

= $\frac{\tan A}{(\sec^2 A)^2} + \frac{\cot A}{(\csc^2 A)^2}$...($\because 1 + \tan^2 \theta = \sec^2 \theta$ and $1 + \cot^2 \theta = \csc^2 \theta$)

$$= \frac{\sin A}{\cos A} \times (\cos^2 A)^2 + \frac{\cos A}{\sin A} \times (\sin^2 A)^2$$
$$= \sin A \times \cos^3 A + \cos A \times \sin^3 A$$
$$= \sin A.\cos A \quad (\cos^2 A + \sin^2 A)$$
$$= \sin A.\cos A \qquad \dots (\because \sin^2 \theta. \cos^2 \theta = 1)$$

 \therefore LHS = RHS

Q.4. Solve the following sub-questions (any *two*)

☐ABCD is a parallelogram. Point P is the midpoint of side CD. Seg BP intersects diagonal AC at point X, then prove that: 3AX = 2AC

[8]

Solution:

Proof: ABCD is parallelogram, and point P is the midpoint of side DC. ...(Given)

 $\therefore AB = CD = 2CP \qquad \dots (i)$

Now, in $\triangle AXB$ and $\triangle CXP$,

	$\angle AXB \cong \angle CXP$	(Vertically opposite angles)
	$\angle BAX \cong \angle PCX$	(Alternate angles)
÷	$\Delta AXB \sim \Delta CXP$	(By AA test)
÷	$\frac{AX}{CX} = \frac{AB}{CP}$	(C.S.S.T)
÷	$\frac{AX}{CX} = \frac{2CP}{CP}$	[From (i)]
<i>.</i>	$\frac{AX}{CX} = \frac{2}{1}$	
	$CX = \frac{AX}{2}$	
Nov	w, $AC = AX + CX$	(A–X–C)
÷	$AC = AX + \frac{AX}{2}$	

$$\therefore \qquad AC = \frac{2AX + AX}{2}$$
$$\therefore \qquad 2AC = 3AX$$
$$\therefore \qquad 3AX = 2AC$$

Hence proved.

(2) In the alongside figure, segAB and seg AD are tangent segments drawn to a circle with centre C from exterior point A, then prove that: $\angle A = \frac{1}{2} [m(\operatorname{arc} BYD) - m(\operatorname{arc} BXD)]$

Solution:

seg CB \perp seg AB (Tangent perpendicular to radius) seg CD \perp seg AD $\angle ABC = \angle ADC = 90^{\circ} \dots (i)$ Now, in \Box ABCD, $\angle A + \angle C + \angle B + \angle D = 360^{\circ}$...(Sum of angles of quadrilateral) $\angle A + \angle C + 90^{\circ} + 90 = 360^{\circ}$...[From (i)] $\angle A + \angle C = 360^{\circ} - 180^{\circ}$.**.**. $/A + /C = 180^{\circ}$.**.**. $\angle A = 180^{\circ} - \angle C$.**.**. But $\angle C = m(\text{arc BXD})$ (Definition of measure of arc) $\angle A = 180^{\circ} - m(\text{arc BXD})$...(ii) · . Now, $m(\text{arc BXD}) + m(\text{arc BYD}) = 360^{\circ}$...(Measure of complete circle) $\therefore \quad \frac{1}{2} m(\text{arc BXD}) + \frac{1}{2} m(\text{arc BYD}) = 180^{\circ} \dots (\text{iii}) \\ \dots [\text{Multiplying (ii) by } \frac{1}{2}]$ $\therefore \quad \angle A = \frac{1}{2} m(\text{arc BXD}) + \frac{1}{2} m(\text{arc BYD}) - m(\text{arc BXD})$...[From (ii) and (iii)] $=\frac{1}{2}m(\text{arc BYD})-\frac{1}{2}m(\text{arc BXD})$ $\therefore \quad \angle A = \frac{1}{2} [m(\text{arc BYD}) - m(\text{arc BXD})]$

(3) Find the co-ordinates of centroid of a triangle if points D(-7, 6), E(8, 5) and F(2, -2) are the midpoints of the sides of that triangle.

Solution:

Adding equations (i), (iii) and (v), $2x_1 + 2x_2 + 2x_3 = 6$

$$\therefore \quad x_{1} + x_{2} + x_{3} = 3$$

$$\therefore \quad \frac{x_{1} + x_{2} + x_{3}}{3} = \frac{3}{3}$$

$$\therefore \quad \frac{x_{1} + x_{2} + x_{3}}{3} = 1$$

Adding equations (ii), (iv) and (vi),

$$y_{1} + y_{2} + y_{3} = 9$$

$$\therefore \quad \frac{y_{1} + y_{2} + y_{3}}{3} = 3$$

But $G = \left(\frac{x_{1} + x_{2} + x_{3}}{3}, \frac{y_{1} + y_{2} + y_{3}}{3}\right)$...(Centroid formula)

$$\therefore \quad G = (1, 3)$$

Q.5. Solve the following sub-question (any *one*): [3]

a and b are natural numbers and a > b. If $(a^2 + b^2)$, (1) $(a^2 - b^2)$ and 2ab are the sides of a triangle, then prove that the triangle is right angled.

Find out two Pythagorean triplets by taking suitable values of a and b.

Solution:

· .

a and b are natural numbers and a > b. ...(Given) Longest side = $(a^2 + b^2)$ $(a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^4$...(i) and $(a^2 - b^2)^2 + (2ab)^2 = a^4 - 2a^2b^2 + b^4 + 4a^2b^2$:. $(a^2 - b^2)^2 + (2ab)^2 = a^4 + 2a^2b^2 + b^4$...(ii) $\therefore (a^2 + b^2)^2 = (a^2 - b^2)^2 + (2ab)^2$...[From (i) and (ii)] By converse of Pythagoras theorem,

 $(a^2 + b^2)$, $(a^2 - b^2)$ and 2ab are the sides of a right-angled triangle.

Now, if a = 2 and b = 1 then $a^2 + b^2 = 2^2 + 1^2 = 4 + 1 = 5$ $(a^2 - b^2) = 2^2 - 1^2 = 4 - 1 = 3$ $2ab = 2 \times 2 = 4$

- ∴ (3, 4, 5) is a Pythagorean triplet. Similarly, if a = 3 and b = 2, then a² + b² = 3² + 2² = 9 + 4 = 13 a² - b² = 3² - 2² = 9 - 4 = 5 2ab = 2 × 3 × 2 = 12
 ∴ (5, 12, 13) is a Pythagorean triplet.
- (2) Construct two concentric circles with centre O and radii 3 cm and 5 cm. Construct a tangent to the smaller circle from any point A on the larger circle. Measure and wirte the length of the tangent segment. Calculate the length of the tangent using Pythagoras theorem.

Solution:

 ΔOAP is a right angled triangle.

OA = 5 cm, OP = 3 cm, AP = ?

By Pythagoras theorem,

$$AP^{2} = OA^{2} - OP^{2}$$
$$= 5^{2} - 3^{2}$$
$$= 25 - 9$$
$$= 16$$
$$AP = 4$$
