SOLUTION

- Q.1. (A) Four alternative answers are given for every subquestion. Select the correct alternative and write the alphabet of that answer. [4]
- (1) Out of the following which is the Pythagorean triplet?
 (a) (1, 5, 10)
 (b) (3, 4, 5)
 (c) (2, 2, 2)
 (d) (5, 5, 2)
- (2) Two circles of radii 5.5 cm and 3.3 cm respectively touch each other externally. What is the distance between their centres?
 - (a) 4.4 cm (b) 2.2 cm (c) 8.8 cm (d) 8.9 cm
- (3) Distance of point (-3, 4) from the origin is (a) 7 (b) 1 (c) -5 (d) 5

(4) Find the volume of a cube of side 3 cm: (a) 27 cm^3 (b) 9 cm^3 (c) 81 cm^3 (d) 3 cm^3

Ans. (1) - (b), (2) - (c), (3) - (d), (4) - (a).

- Q.1. (B) Solve the following questions.
- (1) The ratio of corresponding sides of similar triangle is 3 : 5, then find the ratio of their areas.

Solution:

Let the Δ_1 and Δ_2 have sides S_1 and S_2 respectively.

 $\frac{A(\Delta_1)}{A(\Delta_2)} = \frac{(S_1)^2}{(S_2)^2} \quad \dots \text{ (Ratio of areas of two similar triangles)}$

$$\therefore \quad \frac{\mathcal{A}(\Delta_1)}{\mathcal{A}(\Delta_2)} = \frac{3^2}{5^2} = \frac{9}{25}$$

Ans. The ratio of the areas of given triangles is 9:25.

(2) Find the diagonal of a square whose side is 10 cm. Solution:

 \Box ABCD is a square with side 10 cm.

In $\triangle ABC$, $\angle B = 90^{\circ}$...(Property of a square)

$$\therefore$$
 AC² = AB² + BC² ...(Pythagoras theorem)

$$\therefore AC^2 = 10^2 + 10^2$$

$$= 100 + 100$$

$$\therefore$$
 AC = $10\sqrt{2}$

Ans. The diagonal of a square is $10\sqrt{2}$ cm.

(3) \Box ABCD is cyclic. If $\angle B = 110^{\circ}$, then find measure of $\angle D$. Solution:

 $\angle B = 110^{\circ}$...(Given)

 $\therefore \quad \angle B + \angle D = 180^{\circ} \quad ... (Opposite angles of a cyclic quadrilateral)$

 $\therefore 110^\circ + \angle D = 180^\circ$

$$\therefore \qquad \angle \mathbf{D} = 180^\circ - 110^\circ$$

 $\therefore \qquad \angle D = 70^{\circ}$

Ans. The measure of $\angle D = 70^{\circ}$.

[4]

(4) Find the slope of the line passing through the points A(2, 3) and B(4, 7).

Solution:

A(2, 3) = (x_1, y_1) B(4, 7) = (x_2, y_2) Slope of the line AB = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{7 - 3}{4 - 2}$ = $\frac{4}{2}$ = 2 Ans. The slope of the line AB is 2.

 $\mathbf{A} = \mathbf{A} + \mathbf{A} +$

Q.2. (A) Complete and write the following activities. (Any two) [4]

Q

(1) In the adjoining figure, 'O' is the centre of the circle, seg PS is a tangent segment and S is the point of contact. Line PR is a secant.

If PQ = 3.6, QR = 6.4, find PS.

Solution:

 $PS^{2} = PQ \times \square$...(Tangent secant segments theorem) = PQ × (PQ + □) = 3.6 × (3.6 + 6.4) = 3.6 × □ = 36 ∴ PS = □ ... (By taking square roots) Solution: PS^{2} = PQ × PR(Tangent secant segments theorem) = PQ × (PQ + QR)

$$= 3.6 \times (3.6 + 6.4)$$

$$= 3.6 \times \boxed{10}$$

$$= 36$$

$$\therefore PS = \boxed{6} \qquad ... (By taking square roots)$$
Ans. PS = 6.
(2) If sec $\theta = \frac{25}{7}$, find the value of tan θ .
Solution: $1 + \tan^2 \theta = \sec^2 \theta$

$$\therefore \qquad 1 + \tan^2 \theta = (\frac{25}{7})^{\Box}$$

$$\therefore \qquad \tan^2 \theta = \frac{625}{49} - \Box$$

$$= \frac{625 - 49}{49}$$

$$= \frac{\Box}{49}$$

$$\therefore \qquad \tan \theta = \frac{\Box}{7} \qquad ... (By taking)$$
Solution: $1 + \tan^2 \theta = \sec^2 \theta$

$$\therefore \qquad 1 + \tan^2 \theta = (\frac{25}{7})^{\Box}$$

$$\therefore \qquad \tan^2 \theta = \frac{625}{49} - [1]$$

$$= \frac{625 - 49}{49}$$

$$= \frac{576}{49}$$

$$\therefore \qquad \tan \theta = \frac{24}{7} \qquad ... (By taking)$$

...(By taking square roots)

...(By taking square roots)

(3) In the given figure, O is the centre of the circle. Using given information complete the following table.

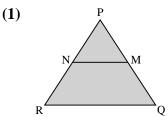
	Y	
(Q	
	100°	
A	×	УВ

Type of arc	Name of the arc	Measure of the arc
Minor arc		
Major arc		

Solution:

Type of arc	Name of the arc	Measure of the arc
Minor arc	AXB	100°
Major arc	AYB	260°

Q.2. (B) Solve the following sub-questions. (Any four) [8]



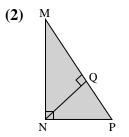
In \triangle PQR, NM || RQ. If PM = 15, MQ = 10, NR = 8, then find PN.

Solution:

In \triangle PQR, NM || QR.

 $\therefore \quad \frac{PN}{NR} = \frac{PM}{MQ} \qquad \dots (BPT)$ $\therefore \quad \frac{PN}{8} = \frac{15}{10}$ $\therefore \quad PN = \frac{15 \times 8}{10}$

Ans.PN = 12 unit



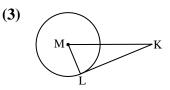
In \triangle MNP. \angle MNP = 90°, seg NQ \perp seg MP. If MQ = 9, QP = 4, then find NQ.

In right angled triangle MNP, NQ \perp MP.

- \therefore NQ² = MQ × QP ...(Property of geometric mean)
- \therefore NQ² = 9 x 4
- \therefore NQ = 3 x 2

...(Taking square roots)

Ans. NQ = 6



In the given figure, M is the centre of the circle and seg KL is a tangent segment. L is a point of contact. If MK = 12, KL = $6\sqrt{3}$, then find the radius of the circle.

Solution:

ML is a radius and KL is a tangent.

 \therefore \angle MLK = 90° ...(Radius is perpendicular to the tangent at the point of contact)

In Δ MLK, \angle MLK = 90°.

 \therefore MK² = ML² + KL² ...(Pythagoras theorem)

$$\therefore \quad 12^2 = \mathrm{ML}^2 + (6\sqrt{3})^2$$

 $\therefore \quad 144 = ML^2 + 108$

$$\therefore$$
 ML² = 144 - 108

- \therefore ML² = 36
- \therefore ML = 6 unit ...(Taking square root)
- Ans. The radius of the circle is 6 unit.

(4) Find the co-ordinates of midpoint of the segment joining the points (22, 20) and (0, 16).

Solution:

Let $(22, 20) = (x_1, y_1)$ $(0, 16) = (x_2, y_2)$

By midpoint formula,

	$x = \frac{x_2 + x_1}{2}$	and	$y = \frac{y_2 + y_1}{2}$
∴	$x = \frac{0+22}{2}$	and	$y = \frac{16 + 20}{2}$
÷	$x = \frac{22}{2}$	and	$y = \frac{36}{2}$
<i>.</i>	<i>x</i> = 11	and	<i>y</i> = 18

- Ans. (11, 18) is the midpoint of the segment joining the points (22, 20) and (0, 16).
- (5) A person is standing at a distance of 80 metres from a Church and looking at its top. The angle of elevation is of 45°. Find the height of the Church.

Solution:

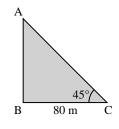
Let AB be the Church and the person is standing at C.

$$\tan \theta = \frac{AB}{BC}$$

$$\therefore \quad \tan 45^\circ = \frac{AB}{80}$$

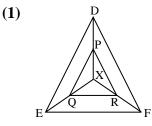
$$\therefore \quad 1 = \frac{AB}{80}$$

$$\therefore \quad AB = 80 \text{ m}$$



Ans. The height of the Church is 80 m.

Q.3. (A) Complete and write the following activities. (Any one) [3]



RF

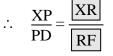
QE

In the given figure, X is any point in the interior of the triangle. Point X is joined to the vertices of triangle.

Seg PQ || seg DE, seg QR || seg EF. Complete the activity and prove that seg PR || seg DF.

Proof:

110	01.		
	In ΔXDE ,		
	PQ DE	(Given)	
÷	$\frac{XP}{PD} = \frac{\Box}{QE}$	(Basic proportionality theorem)(i	i)
	In ΔXEF ,		
	QR EF	(Given)	
<i>.</i>	$\frac{XQ}{\Box} = \frac{XR}{\Box}$	()(i	ii)
÷	$\frac{\text{XP}}{\text{PD}} = $	[From (i) and (ii)]	
	seg PR seg DF	(By converse of basic proportional theorem)	lity
Sol	ution:		
Pro			
	In ΔXDE ,		
	$PQ \parallel DE$	(Given)	
÷	$\frac{XP}{PD} = \frac{XQ}{QE}$	(Basic proportionality theorem)(i	i)
	In ΔXEF ,		
	QR EF	(Given)	
	$\frac{XQ}{OE} = \frac{XR}{RE}$	(Basic proportionality theorem)(i	ii)



...[From (i) and (ii)]

:. seg PR || seg DF ...(By converse of basic proportionality theorem)

 (2) If A(6, 1), B(8, 2), C(9, 4) and D(7, 3) are the vertices of □ABCD, show that □ABCD is a parallelogram.

Solution:

Slope of line =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

- $\therefore \quad \text{Slope of line AB} = \frac{2-1}{8-6} = \boxed{\qquad \dots(i)}$
- $\therefore \quad \text{Slope of line BC} = \frac{4-2}{9-8} = \boxed{\qquad \dots(ii)}$

$$\therefore \quad \text{Slope of line CD} = \frac{3-4}{7-9} = \boxed{\qquad} \dots (\text{iii})$$

$$\therefore \quad \text{Slope of line DA} = \frac{3-1}{7-6} = \boxed{\qquad \dots(iv)}$$

- \therefore Slope of line AB =
- \therefore Line AB || line CD
- \therefore Slope of line BC =
- ...[From (ii) and (iv)]

...[From (i) and (iii)]

 \therefore Line BC || line DA

Both the pairs of opposite sides of the quadrilateral are parallel.

 \therefore \Box ABCD is a parallelogram.

Solution:

Slope of line $=\frac{y_2 - y_1}{x_2 - x_1}$

 $\therefore \quad \text{Slope of line AB} = \frac{2-1}{8-6} = \boxed{\frac{1}{2}} \qquad \dots(i)$

$$\therefore \quad \text{Slope of line BC} = \frac{4-2}{9-8} = \boxed{2} \qquad \dots (\text{ii})$$

$$\therefore \quad \text{Slope of line CD} = \frac{3-4}{7-9} = \boxed{\frac{1}{2}} \qquad \dots (\text{iii})$$

$$\therefore \quad \text{Slope of line DA} = \frac{3-1}{7-6} = \boxed{2} \qquad \dots (\text{iv})$$

- \therefore Slope of line AB = Slope of line CD ...[From (i) and (iii)]
- : Line AB || line CD

$$\therefore$$
 Slope of line BC = Slope of line DA ...[From (ii) and (iv)]

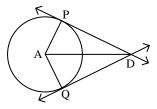
- ∴ Line BC || line DA
 Both the pairs of opposite sides of the quadrilateral are parallel.
- \therefore \Box ABCD is a parallelogram.
- Q.3. (B) Solve the following sub-questions. (Any two) [6]
- (1) In \triangle PQR, point S is the mid-point of side QR. If PQ = 11, PR = 17, PS = 13, find QR.

PS is a median in $\triangle PQR$.

OS = SR...(i) and *.*.. $PO^2 + PR^2 = 2PS^2 + 2OS^2$...(Apolloneous theorem) $11^2 + 17^2 = 2[(13)^2 + OS^2]$ $121 + 289 = 2(169 + QS^2)$ · . 17 11 $169 + QS^2 = \frac{410}{2}$ • 13 $OS^2 = 205 - 169$ $OS^2 = 36$ OS = 6...(Taking square root) SR = 6...[From (i)] QR = QS + SR $\dots(Q-S-R)$ OR = 6 + 6*.*.. QR = 12 unit *.*.. QR = 12 unit. Ans.

(2) Prove that, tangent segments drawn from an external point to the circle are congruent.

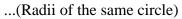
Given: A is the centre of the circle and D is a point in the exterior of the circle. P and Q are the points of contact of the two tangents from D to the circle.



To prove: seg $DP \cong seg DQ$

Construction: Join A and D.

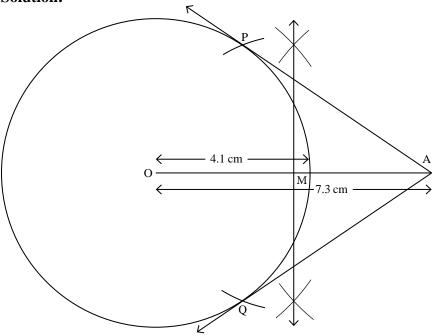
Proof: In $\triangle PAD$ and $\triangle QAD$, seg $PA \cong$ seg QAseg $AD \cong$ seg AD $\angle APD \cong \angle AQD = 90^{\circ}$ $\therefore \qquad \triangle PAD \cong \triangle QAD$ $\therefore \qquad$ seg $DP \cong$ seg DQHence, proved.



...(Common side)

- ...(Tangent theorem)
- ...(Hypotenuse-side test)
- ...(c.s.c.t)
- (3) Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Solution:



AP and AQ are the required tangents on the circle with centre O from point A at a distance of 7.3 cm from the centre.

(4) A metal cuboid of measures 16 cm x 11 cm x 10 cm was melted to make coins. How many coins were made, if the thickness and diameter of each coin was 2 mm and 2 cm respectively?

Solution:

Let the measures of the metal cuboid be l = 16 cm = 160 mm, b = 11 cm = 110 mm and h = 10 cm = 100 mm.

Volume of the metal cuboid = $l \times b \times h$...(Formula)

$$= 160 \times 110 \times 100$$
 ...(i)

Thickness of the coin (h) = 2 mm and

Diameter = 2 cm, so radius = 1 cm = 10 mm

Volume of the cylindrical coin = $\pi r^2 \cdot h$

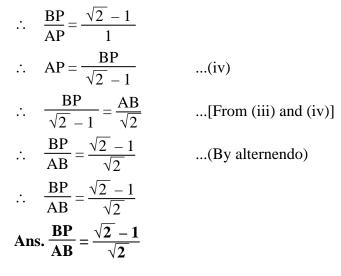
$$=\frac{22}{7} \times 100 \times 2$$
 ...(ii)

Number of coins =
$$\frac{\text{Volume of the metalic cuboid}}{\text{Volume of the cylindrical coin}}$$
$$= \frac{160 \times 110 \times 100}{\frac{22}{7} \times 100 \times 2} \qquad \dots \text{[From (i) and (ii)]}$$
$$= \frac{160 \times 110 \times 5 \times 7}{220}$$
$$= \frac{616000}{220}$$
$$= 2800$$

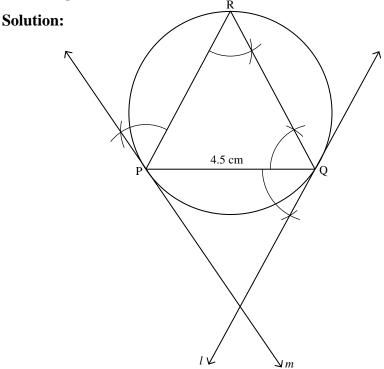
Ans. 2800 coins were made.

- Q.4. Solve the following sub-questions. (Any two) [8]
- (1) In $\triangle ABC$, PQ is a line segment intersecting AB at P and AC at Q such that seg PQ || seg BC. If PQ divides $\triangle ABC$ into two equal parts having equal areas, find $\frac{BP}{AB}$.

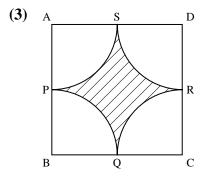
bon		٨
	$A(\Delta APQ) = A(\Box PBCQ)$ (Given	n) A
<i>.</i>	$\frac{A(\Delta APQ)}{A(\Box PBCQ)} = \frac{1}{1}$	P Q
<i>.</i>	$\frac{A(\Box PBCQ)}{A(\Delta APQ)} = \frac{1}{1}$	$B \xrightarrow{C} C$ (By invertendo)
	$\frac{A(\Box PBCQ) + A(\Delta APQ)}{A(\Delta APQ)} = \frac{1+1}{1}$	(By componendo)
	$\frac{A(\Delta ABC)}{A(\Delta APQ)} = \frac{2}{1}$	
÷	$\frac{A(\Delta APQ)}{A(\Delta ABC)} = \frac{1}{2} \qquad \dots (i)$	(By invertendo)
	In $\triangle APQ$ and $\triangle ABC$,	
	PQ BC and AB is a transversal.	
	$\angle APQ \cong \angle ABC$	(Corresponding angles)
	Similarly, $\angle AQP \cong \angle ACB$	
	$\Delta APQ \sim \Delta ABC$	(By AA test)
÷	$\frac{A(\Delta APQ)}{A(\Delta ABC)} = \frac{AP^2}{AB^2} (Ratio of areas)$	of two similar triangles)
<i>.</i>	$\frac{AP^2}{AB^2} = \frac{1}{2}$ [From (i)]	
÷	$\frac{AP}{AB} = \frac{1}{\sqrt{2}} \qquad \dots (ii)$	(Taking square roots)
	$AP = \frac{AB}{\sqrt{2}} \qquad \dots (iii)$	
	From (ii),	
	$\frac{AP}{AB} = \frac{1}{\sqrt{2}}$	
	$\frac{AB}{AP} = \frac{\sqrt{2}}{1}$	(By invertendo)
<i>.</i>	$\frac{AB - AP}{AP} = \frac{\sqrt{2} - 1}{1}$	(By dividendo)



(2) Draw a circle of radius 2.7 cm and draw a chord PQ of length 4.5 cm. Draw tangents at points P and Q without using centre.



Line *l* and line *m* are the required tangents.



In the given figure, □ABCD is a square of side 50 m. Points P, Q, R, S are midpoints of side AB, side BC, side CD, side AD respectively. Find area of shaded region.

Solution:

A(□ABCD) = (side)²
= (50)²
= 2500 m²
P is midpoint of AB. ...(Given)
∴ AP = BP = 25 m.
∠BAD = 90°
A(sector A-PS) =
$$\frac{\theta}{360} \times \pi r^2$$

= $\frac{90}{360} \times \frac{22}{7} \times 25 \times 25$
= $\frac{1}{4} \times \frac{22}{7} \times 625$
= 491.07 m²

Similarly, we can find A(sector B-PQ) = A(sector C-QR) = A(sector D-RS) = 491.07 m² A(shaded region) = A(\Box ABCD) - 4[A(four sectors)] = 2500 - 4 x 491.07 = 2500 - 1964.28 = 535.72 m²

Ans. The area of the shaded region is 535.72 m².

[Note: If you take $\pi = 3.14$, the area of the shaded region will be 537.5 m²]

Q.5. Solve the following sub-question. (Any one)

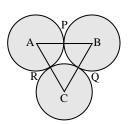
(1) Circle with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

Solution:

Let P, Q, R be the point of contacts of three externally touching circles.

Let AP = AR = x

 $\therefore BP = BQ = 3 - x \text{ and}$ CR = CQ = 4 - xPerimeter of $\triangle ABC = 3 + 3 + 4$ $\therefore x + x + 3 - x + 3 - x + 4 - x + 4 - x = 10$ $\therefore 14 - 2x = 10$ $\therefore -2x = 10 - 14$ $\therefore x = \frac{-4}{-2}$ $\therefore x = 2 \text{ cm}$



[3]

Ans. Radius of the circle with centre A = x = 2 cm.

Radius of the circle with centre B = 3 - x = 3 - 2 = 1 cm. Radius of the circle with centre C = 4 - x = 4 - 2 = 2 cm.

(2) If $\sin \theta + \sin^2 \theta = 1$, show that: $\cos^2 \theta + \cos^4 \theta = 1$.

 $\sin \theta + \sin^2 \theta = 1 \qquad \dots (Given)$ $\therefore \qquad \sin \theta = 1 - \sin^2 \theta \qquad \dots (\because 1 - \sin^2 \theta = \cos^2 \theta)$ $\therefore \qquad \sin^2 \theta = \cos^4 \theta \qquad \dots (\because 1 - \sin^2 \theta = \cos^2 \theta)$ $\therefore \qquad 1 - \cos^2 \theta = \cos^4 \theta \qquad \dots (Squaring both the sides)$ $\therefore \qquad \cos^2 \theta + \cos^4 \theta = 1$

Hence proved
