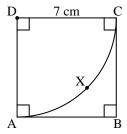

Time	e: 2 hours	Board Paper	r – July 2023	Total Marks: 40
 Note: (i) All questions are compulsory. (ii) Use of a calculator is not allowed. (iii) The numbers to the right of the questions indicate full marks. (iv) In case of MCQs [Q. No. 1(A)], only the first attempt will be evaluated and will be given credit. (v) For every MCQ, the correct alternative (A), (B), (C) or (D) with subquestion number is to be written as an answer. 				
Q.1. (A) For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet. [4]				
(1)		-	10 cm is	
	(a) 1 cm^3	(b) 10 cm^3	(c) 100 cm^3	(d) 1000 cm^3
(2)	A line makes an angle of 30° with positive direction of X-axis, then the slope of the line is			
	(a) $\frac{1}{2}$	(b) $\frac{\sqrt{3}}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\sqrt{3}$
(3)	\angle ACB is inscribed in arc ACB of a circle with centre O. If \angle ACB = 65°, find <i>m</i> (arc ACB):			
	(a) 65°	(b) 130°	(c) 295°	(d) 230°
(4)				
	(a) 10 cm	(b) $40\sqrt{2}$ cm	(c) 20 cm	(d) 40 cm
(B) (1)	Solve the following sub-questions. [4] In the following figure, $\angle ABC = \angle DCB = 90^{\circ}$, $AB = 6$, $DC = 8$, then $\frac{A(\triangle ABC)}{A(\triangle DCB)} = ?$			
		A 6 B	D 8 C	

(2) In the figure alongside, find the length of RP using the information given in Δ PSR.


- (3) What is the distance between two parallel tangents of a circle having radius 4.5 cm?
- (4) Find the co-ordinates of midpoint of the segment joining the points A(4, 6) and B(-2, 2).
- Q.2. (A) Complete the following activities and rewrite them. (Any *two*) [4]
- In the figure alongside, circle with centre D touches the sides of ∠ACB at A and B.
 If ∠ACB = 52°, complete the activity to find the measure of ∠ADB.

Activity:

In \square ABCD, \angle CAD = \angle CBD = \square° Tangent theorem $\therefore \quad \angle$ ACB + \angle CAD + \angle CBD + \angle ADB = \square° $\therefore \qquad 52^{\circ} + 90^{\circ} + 90^{\circ} + \angle$ ADB = 360° $\therefore \qquad \angle$ ADB + $\square^{\circ} = 360^{\circ}$ $\therefore \qquad \angle$ ADB = $360^{\circ} - 232^{\circ}$ $\therefore \qquad \angle$ ADB = \square°

(2) In the figure alongside, side of square ABCD is 7 cm. With centre D and radius DA, sector D–AXC is drawn.
Complete the following activity to find the area of square ABCD and sector D–AXC.

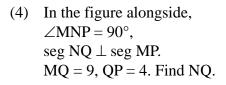
Activity:

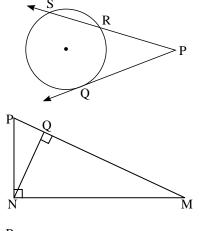
- Area of square = $\boxed{}$ formula = (7)² = 49 cm² Area of sector (D-AXC) = $\boxed{}$ formula = $\frac{\boxed{}}{360} \times \frac{22}{7} \times \boxed{}$ = 38.5 cm²
- (3) Complete the following activity to prove $\cot \theta + \tan \theta = \csc \theta \times \sec \theta.$

Activity:

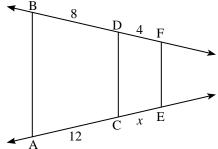
L.H.S. = $\cot \theta + \tan \theta$

$$= \frac{\Box}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$
$$= \frac{\Box}{\sin \theta} + \frac{\Box}{\cos \theta}$$
$$= \frac{1}{\sin \theta} \cdot \cos \theta \quad (\because \sin^2 \theta + \cos^2 \theta = 1)$$
$$= \frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$$
$$= \Box \times \sec \theta$$

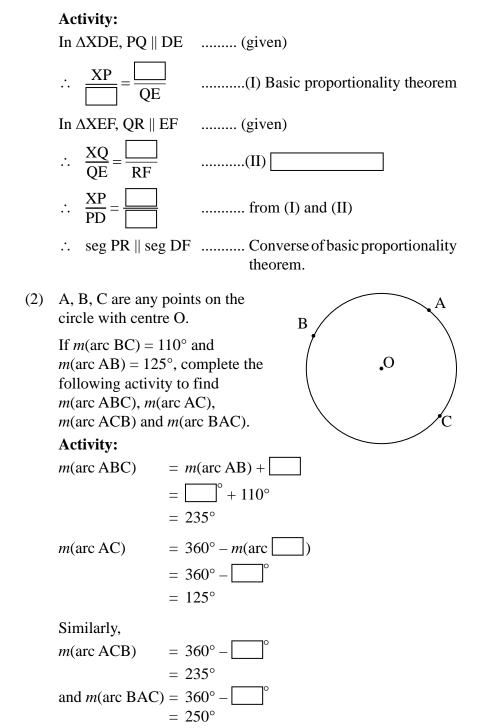

 $\therefore \quad L.H.S. = R.H.S.$


$$\therefore \quad \cot \theta + \tan \theta = \csc \theta \times \sec \theta$$

(B) Solve the following sub-questions. (Any *four*) [8]


- (1) If $\cos \theta = \frac{3}{5}$, then find $\sin \theta$.
- (2) Find the slope of line EF, where co-ordinates of E are (-4, -2) and co-ordinates of F are (6, 3).

(3) In the figure alongside, ray PQ touches the circle at point Q. If PQ = 12, PR = 8, find the length of seg PS.


(5) In the figure alongside,if AB || CD || EF, then find x and AE by using the information given in the figure.

Q.3. (A) Complete the following activity and rewrite it. (Any one) [3]

(1) p R F

In the above figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. seg PQ \parallel seg DE, seg QR \parallel seg EF. Complete the following activity to prove seg PR \parallel seg DF.

(B) Solve the following sub-questions. (Any *two*)

- (1) The radius of a circle is 6 cm, the area of a sector of this circle is 15π sq. cm. Find the measure of the arc and the length of the arc corresponding to that sector.
- (2) If A(3, 5) and B(7, 9), point Q divides seg AB in the ratio 2:3, find the co-ordinates of point Q.
- (3) Prove that:

"In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaining two sides."

(4) $\triangle PQR \sim \triangle LTR$. In $\triangle PQR$, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct $\triangle PQR$ and $\triangle LTR$ such that $\frac{PQ}{LT} = \frac{3}{4}$.

Q.4. Solve the following sub-questions. (Any *two*) [8]

(1) A bucket is in the form of a frustum of a cone. It holds 28.490 litres of water. The radii of the top and the bottom are 28 cm and 21 cm respectively. Find the height of the bucket.

 $\left(\pi = \frac{22}{7}\right)$

[3]

- (2) Draw a circle with centre P and radius 3 cm. Draw a chord MN of length 4 cm. Draw tangents to the circle through points M and N which intersect in point Q. Measure the length of seg PQ.
- (3) In $\triangle PQR$, bisectors of $\angle Q$ and $\angle R$ intersect in point X. Line PX intersects side QR in point Y, then prove that:

$$\frac{PQ + PR}{QR} = \frac{PX}{XY}$$

- Q.5. Solve the following sub-questions. (Any one)
- (1) From top of the building, Ramesh is looking at a bicycle parked at some distance away from the building on the road.

If

 $AB \rightarrow Height of building is 40 m$

 $C \rightarrow Position of bicycle$

 $A \rightarrow$ Position of Ramesh on top of the building

 \angle MAC is the angle of depression and $m \angle$ MAC = 30°, then:

- (a) Draw a figure with the given information.
- (b) Find the distance between building and the bicycle $(\sqrt{3} = 1.73)$.
- (2) \square ABCD is a cyclic quadrilateral where side AB \cong side BC, \angle ADC = 110°, AC is the diagonal, then:
 - (a) Draw the figure using given information.
 - (b) Find measure of $\angle ABC$.
 - (c) Find measure of $\angle BAC$.
 - (d) Find measure of (arc ABC).